Respuesta :

Answer:

-sqrt((1-(sqrt(2)/2)/1+(sqrt(2)/2))

Step-by-step explanation:

tan (7pi/8) = tan (7pi/4/2)

Which equals...

-sqrt((1-cos((7pi/4))/1+cos((7pi/4))

And just simplify into...

-sqrt((1-(sqrt(2)/2)/1+(sqrt(2)/2))

Answer:

The exact form of [tex]\tan(\frac{7\pi}{8})[/tex] is [tex]-\sqrt{2}+1[/tex]

Step-by-step explanation:

We need to find the exact value of [tex]\tan(\frac{7\pi}{8})[/tex] using half angle identity.

Since, [tex]\frac{7\pi}{8}[/tex]  is not an angle where the values of the six trigonometric functions are known, try using half-angle identities.

[tex]\frac{7\pi}{8}[/tex]  is not an exact angle.

First, rewrite the angle as the product of [tex]\frac{1}{2}[/tex] and an angle where the values of the six trigonometric functions are known. In this case,

[tex]\frac{7\pi}{8}[/tex] can be written as ;

[tex](\frac{1}{2})\frac{7\pi}{4}[/tex]

Use the half-angle identity for tangent to simplify the expression. The formula states that [tex] \tan \frac{\theta}{2}=\frac{\sin \theta}{1+ \cos \theta}[/tex]

[tex]=\frac{\sin(\frac{7\pi}{4})}{1+ \cos (\frac{7\pi}{4})}[/tex]

Simplify the numerator.

[tex]=\frac{\frac{-\sqrt{2}}{2}}{1+ \cos (\frac{7\pi}{4})}[/tex]

Simplify the denominator.

[tex]=\frac{\frac{-\sqrt{2}}{2}}{\frac{2+\sqrt{2}}{2}}[/tex]

Multiply the numerator by the reciprocal of the denominator.

[tex]\frac{-\sqrt{2}}{2}\times \frac{2}{2+\sqrt{2}}[/tex]

cancel the common factor of 2.

[tex]\frac{-\sqrt{2}}{1}\times \frac{1}{2+\sqrt{2}}[/tex]

Simplify,

[tex]\frac{-\sqrt{2}(2-\sqrt{2})}{2}[/tex]

[tex]\frac{-(2\sqrt{2}-\sqrt{2}\sqrt{2})}{2}[/tex]

[tex]\frac{-(2\sqrt{2}-2)}{2}[/tex]

simplify terms,

[tex]-\sqrt{2}+1[/tex]

Therefore, the exact form of [tex]\tan(\frac{7\pi}{8})[/tex] is [tex]-\sqrt{2}+1[/tex]