bm42400
contestada

Use the laws of logarithms and the values given below to evaluate the logarithmic expression (picture provided)

Use the laws of logarithms and the values given below to evaluate the logarithmic expression picture provided class=

Respuesta :

Answer: Option a.

Step-by-step explanation:

To solve the given exercise, you must keep on mind the law of logarithms shown below:

 [tex]log(a)-log(b)=log(\frac{a}{b})[/tex]

Therefore, by applying the law , you can rewrite the expression given, as following:

[tex]log(\frac{5}{7})=log(5)-log(7)[/tex]

You know that:

[tex]log5=0.6990\\log7=0.8451[/tex]

Then, when you substitute values, you obtain:

[tex]0.6990-0.8451=-0.1461[/tex]

Wolfyy

Use the quotient rule [ [tex]\text{log}_a\frac{x}{y} = \text{log}_ax-\text{log}_ay[/tex] ] to simplify.

[tex]\text{log}\frac{5}{7} = \text{log}(5)-\text{log}(7)[/tex]

Simplify using the given values.

0.6990 - 0.8451

-0.1461

Therefore, [tex]\text{log}\frac{5}{7}=-0.1461[/tex]

Best of Luck!