Respuesta :

Answer:

Option b

Step-by-step explanation:

According to the property of sum of logarithms we know that

[tex]log(ab) = log(a) + log(b)[/tex].

In this case we have the equation:

[tex]log(2x) = 3[/tex]

Using the property of sum of logarithms:

[tex]log(2) + log(x) = 3[/tex]

[tex]log(x) = 3 - log(2)[/tex]

We also know that:

[tex]10 ^{(logx)} = x[/tex]     -------- Inverse logarithm

So:

[tex]x = 10 ^{3-log(2)}[/tex]

[tex]x = 500[/tex]

Another easiest way to solve it is the following:

Make [tex]w = 2x[/tex].

Then:

[tex]log(2x) = log(w)[/tex]

[tex]log(w) = 3[/tex]

[tex]w = 10^3[/tex]  -------- Inverse logarithm property

[tex]w = 1000[/tex]  

but [tex]w= 2x[/tex]. Then:

[tex]2x = 1000\\\\x = 500[/tex]