Respuesta :
Answer: option a.
Step-by-step explanation:
By definition, we know that:
[tex]cos^2(\theta)=1-sen^2(\theta)\\\\tan(\theta)=\frac{sin(\theta)}{cos(\theta)}[/tex]
Substitute [tex]sin(\theta)=\frac{6}{11}[/tex] into the first equation, solve for the cosine and simplify. Then, you obtain:
[tex]cos(\theta)=\±\sqrt{1-(\frac{6}{11})^2}\\\\cos(\theta)=\±\sqrt{\frac{85}{121}}\\\\ cos(\theta)=\±\frac{\sqrt{85}}{11}[/tex]
As [tex]sec\theta<0[/tex] then [tex]cos\theta<0[/tex]:
[tex]cos(\theta)=-\frac{\sqrt{85}}{11}[/tex]
Now we can find [tex]tan\theta[/tex]:
[tex]tan\theta=\frac{\frac{6}{11}}{-\frac{\sqrt{85}}{11}}\\\\tan\theta=-\frac{6\sqrt{85}}{85}[/tex]