Answer:
10.6 meters.
Explanation:
We use the law of conservation of energy, which says that the total energy of the system must remain constant, namely:
[tex]\frac{1}{2}mv_i^2+mgh_i-1700j=\frac{1}{2}mv_f^2+mgh_f[/tex]
In words this means that the initial kinetic energy of the roller coaster plus its gravitational potential energy minus the energy lost due to friction (1700j) must equal to the final kinetic energy at top of the second hill.
Now let us put in the numerical values in the above equation.
[tex]m=100kg[/tex]
[tex]h_i=10m[/tex]
[tex]v_i= 6m/s[/tex]
[tex]v_f=4,6m/s[/tex]
and solve for [tex]h_f[/tex]
[tex]h_f= \frac{\frac{1}{2}mv_i^2+mgh_i-1700j-\frac{1}{2}mv_f^2}{mg} =\boxed{ 10.6\:meters}[/tex]
Notice that this height is greater than the initial height the roller coaster started with because the initial kinetic energy it had.