Respuesta :
Answer:
C
Step-by-step explanation:
The formula we use here is:
Length of arc = [tex]\frac{\theta}{360}*2\pi r[/tex]
Where
[tex]\theta[/tex] is the central angle
r is the radius
Putting the given information into the formula we can solve for the central angle:
[tex]LengthOfArc=\frac{\theta}{360}*2\pi r\\4=\frac{\theta}{360}*2\pi(5)\\4=\frac{\theta}{360}*10\pi\\\frac{4}{10\pi}=\frac{\theta}{360}\\\theta=\frac{4*360}{10\pi}\\\theta=45.84[/tex]
rounded to nearest degree, we have 46 degree
C is the right answer.
Answer: OPTION C
Step-by-step explanation:
To solve this problem you must apply the proccedure shown below:
- Use the following formula for calculate the measure fo the central angle:
[tex]\theta=\frac{s}{r}[/tex]
Where s is the arc length and r is the radius.
- Know the lenght of the arc and the radius, you can substitute values.
Therefore, you obtain;
[tex]\theta=\frac{4}{5}=0.8\ radians[/tex]
Convert to degrees:
[tex]\frac{(0.8)(180\°)}{\pi}=45.83\°[/tex]≈46°