Answer:
[tex]m<1=26.4\°[/tex]
[tex]m<2=153.6\°[/tex]
Step-by-step explanation:
we know that
If m<1 and m<2 form a linear pair
then
[tex]m<1+m<2=180\°[/tex] -----> by supplementary angles
substitute the values and solve for x
[tex](2x+20)+48x=180\°[/tex]
[tex]50x=180\°-20\°[/tex]
[tex]50x=160\°[/tex]
[tex]x=3.2\°[/tex]
Find the measure of each angle
[tex]m<1=(2x+20)=2(3.2\°)+20\°=26.4\°[/tex]
[tex]m<2=48x=48(3.2\°)=153.6\°[/tex]