Respuesta :

Answer:

[tex](f\circ g)(3)=-7[/tex]

Step-by-step explanation:

The given functions are;

[tex]f(x)=-2x+7[/tex]

and

[tex]g(x)=x^2-2[/tex]

We need to first of all find [tex](f\circ g)(x)[/tex]

[tex](f\circ g)(x)=f(g(x))[/tex]

[tex](f\circ g)(x)=f(x^2-2)[/tex]

[tex](f\circ g)(x)=-2(x^2-2)+7[/tex]

[tex](f\circ g)(x)=-2x^2+4+7[/tex]

[tex](f\circ g)(x)=-2x^2+11[/tex]

We now plug in x=3

[tex](f\circ g)(3)=-2(3)^2+11[/tex]

[tex](f\circ g)(3)=-18+11[/tex]

[tex](f\circ g)(3)=-7[/tex]

The answer is A. -7 on edge :)