Respuesta :

Answer:

[tex]y=-0.8x-4.7[/tex]

Step-by-step explanation:

Let

[tex]A(-6,-4), B(-2,1)[/tex]

we know that

The perpendicular bisector pass through the midpoint of AB

step 1

Find the midpoint AB

[tex]M=((-6-2)/2,(-4+1)/2)[/tex]

[tex]M=(-4,-1.5)[/tex]

step 2

Find the slope of the given line AB

The formula to calculate the slope between two points is equal to

[tex]m=\frac{y2-y1}{x2-x1}[/tex]

substitute

[tex]m=\frac{1+4}{-2+6}[/tex]

[tex]m=\frac{5}{4}[/tex]

step 3

Find the slope of the perpendicular bisector

we know that

If two lines are perpendicular, then  the product of their slopes is equal to -1

[tex]m1*m2=-1[/tex]

we have

[tex]m1=\frac{5}{4}[/tex]  ----> slope of the given line

substitute in the formula

[tex]\frac{5}{4}*m2=-1[/tex]

[tex]m2=-\frac{4}{5}=-0.8[/tex]

step 4

Find the equation of the perpendicular bisector

we know that

The equation of the line into point slope form is equal to

[tex]y-y1=m(x-x1)[/tex]

we have

[tex]m=-0.8[/tex]

[tex]M=(-4,-1.5)[/tex]

substitute

[tex]y+1.5=-0.8(x+4)[/tex]

[tex]y=-0.8x-3.2-1.5[/tex]

[tex]y=-0.8x-4.7[/tex]