12 points! Pls help.
Drag the tiles to the boxes to form correct pairs. Not all tiles will be used.
Match the circle equations in general form with their corresponding equations in standard form.

12 points Pls help Drag the tiles to the boxes to form correct pairs Not all tiles will be used Match the circle equations in general form with their correspond class=

Respuesta :

Answer:

1) x² + y² - 4x + 12y - 20 = 0 ⇒ (x - 2)² + (y + 6)² = 60

2) x² + y² + 6x - 8y - 10 = 0 ⇒ No choice

3) 3x² + 3y² + 12x + 18y - 15 = 0 ⇒ (x + 2)² + (y + 3)² = 18

4) 5x² + 5y² - 10x + 20y - 30 = 0 ⇒ No choice

5) 2x² + 2y² - 24x - 16y - 8 = 0 ⇒ (x - 6)² + (y - 4)² = 56

6) x² + y² + 2x - 6y - 9 = 0 ⇒ (x + 1)² + (y - 6)² = 46

Step-by-step explanation:

- The general form of the equation of the circle is:

* x² + y² + Dx + Ey + F = 0

 where D , E and F are constant

- The standard form of the equation of the circle is:

* (x - h)² + (y - k)² = r²

 where (h , k) is the center of the circle, r is the radius of it

- To chose the circle equations in general form with their

  corresponding equations in standard form lets do that

1) x² + y² - 4x + 12y - 20 = 0

- we will start to find h and k

∵ h = -coefficient x ÷ 2 coefficient x²

∴ h = -(-4)/2(1) = 2

∵ k = -coefficient y ÷ 2 coefficient y²

∴ k = -(12)/2(1) = -6

∵ r² = h² + k² - F

- where F is the numerical term of the general form

∴ r² = (2)² + (-6)² - (-20) = 4 + 36 + 20 = 60

∴ The equation of the circle in standard form is:

* (x - h)² + (y + k)² = r²

∴ (x - 2)² + (y + 6)² = 60 ⇒ x² + y² - 4x + 12y - 20 = 0

2) x² + y² + 6x - 8y - 10 = 0

- we will start to find h and k

∵ h = -coefficient x ÷ 2 coefficient x²

∴ h = -(6)/2(1) = -3

∵ k = -coefficient y ÷ 2 coefficient y²

∴ k = -(-8)/2(1) = 4

∵ r² = h² + k² - F

- where F is the numerical term of the general form

∴ r² = (-3)² + (4)² - (-10) = 9 + 16 + 10 = 35

∴ The equation of the circle in standard form is:

* (x - h)² + (y + k)² = r²

∴ (x + 3)² + (y - 4)² = 35 ⇒ there is no choice

3) 3x² + 3y² + 12x + 18y - 15 = 0

- we will start to find h and k

∵ h = -coefficient x ÷ 2 coefficient x²

∴ h = -(12)/2(3) = -2

∵ k = -coefficient y ÷ 2 coefficient y²

∴ k = -(18)/2(3) = -3

∵ r² = h² + k² - F

- where F is the numerical term of the general form

∴ r² = (-2)² + (-3)² - (-15/3) = 4 + 9 + 5 = 18

- We divide F by 3 because the coefficient of x² and y²

∴ The equation of the circle in standard form is:

* (x - h)² + (y + k)² = r²

∴ (x + 2)² + (y + 3)² = 18 ⇒ 3x² + 3y² + 12x + 18y - 15 = 0

4) 5x² + 5y² - 10x + 20y - 30 = 0

- we will start to find h and k

∵ h = -coefficient x ÷ 2 coefficient x²

∴ h = -(-10)/2(5) = 1

∵ k = -coefficient y ÷ 2 coefficient y²

∴ k = -(20)/2(5) = -2

∵ r² = h² + k² - F

- where F is the numerical term of the general form

∴ r² = (1)² + (-2)² - (-30/5) = 1 + 4 + 6 = 11

- We divide F by 5 because the coefficient of x² and y²

∴ The equation of the circle in standard form is:

* (x - h)² + (y + k)² = r²

∴ (x - 1)² + (y + 2)² = 11 ⇒ there is no choice

5) 2x² + 2y² - 24x - 16y - 8 = 0

- we will start to find h and k

∵ h = -coefficient x ÷ 2 coefficient x²

∴ h = -(-24)/2(2) = 6

∵ k = -coefficient y ÷ 2 coefficient y²

∴ k = -(-16)/2(2) = 4

∵ r² = h² + k² - F

- where F is the numerical term of the general form

∴ r² = (6)² + (4)² - (-8/2) = 36 + 16 + 4 = 56

- We divide F by 2 because the coefficient of x² and y²

∴ The equation of the circle in standard form is:

* (x - h)² + (y + k)² = r²

∴ (x - 6)² + (y - 4)² = 56 ⇒ 2x² + 2y² - 24x - 16y - 8 = 0

6) x² + y² + 2x - 12y - 9 = 0

- we will start to find h and k

∵ h = -coefficient x ÷ 2 coefficient x²

∴ h = -(2)/2(1) = -1

∵ k = -coefficient y ÷ 2 coefficient y²

∴ k = -(-12)/2(1) = 6

∵ r² = h² + k² - F

- where F is the numerical term of the general form

∴ r² = (-1)² + (6)² - (-9) = 1 + 36 + 9 = 46

∴ The equation of the circle in standard form is:

* (x - h)² + (y + k)² = r²

∴ (x + 1)² + (y - 6)² = 46 ⇒ x² + y² + 2x - 6y - 9 = 0

Answer and Step-by-step explanation:

Answer:

# x² + y² - 4x + 12y - 20 = 0 ⇒ (x - 2)² + (y + 6)² = 60

# 3x² + 3y² + 12x + 18y - 15 = 0 ⇒ (x + 2)² + (y + 3)² = 18

# 2x² + 2y² - 24x - 16y - 8 = 0 ⇒ (x - 6)² + (y - 4)² = 56

# x² + y² + 2x - 12y - 9 = 0 ⇒ (x + 1)² + (y - 6)² = 46

Step-by-step explanation:

* Lets study the problem to solve it

- Use the terms of x and y in the general form to find the standard form

∵ x² + y² - 4x + 12y - 20 = 0

- Use the term x term

∵ -4x ÷ 2 = -2x ⇒ x × -2

∴ (x - 2)²

- Use the term y term

∵ 12y ÷ 2 = 6y ⇒ y × 6

∴ (y + 6)²

∵ (-2)² + (6)² + 20 = 4 + 36 + 20 = 60

∴ x² + y² - 4x + 12y - 20 = 0 ⇒ (x - 2)² + (y + 6)² = 60

∵ x² + y² + 6x - 8y + 10 = 0

- Use the term x term

∵ 6x ÷ 2 = 3x ⇒ x × 3

∴ (x + 3)²

- Use the term y term

∵ -8y ÷ 2 = -4y ⇒ y × -4

∴ (y - 4)²

∵ (3)² + (-4)² - 10 = 9 + 16 - 10 = 5

∴ x² + y² + 6x - 8y + 10 = 0 ⇒ (x + 3)² + (y - 4)² = 5 ⇒ not in answer

∵ 3x² + 3y² + 12x + 18y - 15 = 0 ⇒ divide all terms by 3

∴ x² + y² + 4x + 6y - 5 = 0

- Use the term x term

∵ 4x ÷ 2 = 2x ⇒ x × 2

∴ (x + 2)²

- Use the term y term

∵ 6y ÷ 2 = 3y ⇒ y × 3

∴ (y + 3)²

∵ (2)² + (3)² + 5 = 4 + 9 + 5 = 18

∴ 3x² + 3y² + 12x + 18y - 15 = 0 ⇒ (x + 2)² + (y + 3)² = 18

∵ 5x² + 5y² - 10x + 20y - 30 = 0 ⇒ divide both sides by 5

∴ x² + y² - 2x + 4y - 6 = 0

- Use the term x term

∵ -2x ÷ 2 = -x ⇒ x × -1

∴ (x - 1)²

- Use the term y term

∵ 4y ÷ 2 = 2y ⇒ y × 2

∴ (y + 2)²

∵ (-1)² + (2)² + 6 = 1 + 4 + 6 = 11

∴ 5x² + 5y² - 10x + 20y - 30 = 0 ⇒ (x - 1)² + (y + 2)² = 11 ⇒ not in answer

∵ 2x² + 2y² - 24x - 16y - 8 = 0 ⇒ divide both sides by 2

∴ x² + y² - 12x - 8y - 4 = 0

- Use the term x term

∵ -12x ÷ 2 = -6x ⇒ x × -6

∴ (x - 6)²

- Use the term y term

∵ -8y ÷ 2 = -4y ⇒ y × -4

∴ (y - 4)²

∵ (-6)² + (-4)² + 4 = 36 + 16 + 4 = 56

∴ 2x² + 2y² - 24x - 16y - 8 = 0 ⇒ (x - 6)² + (y - 4)² = 56

∵ x² + y² + 2x - 12y - 9 = 0

- Use the term x term

∵ 2x ÷ 2 = x ⇒ x × 1

∴ (x + 1)²

- Use the term y term

∵ -12y ÷ 2 = -6y ⇒ y × -6

∴ (y - 6)²

∵ (1)² + (-6)² + 9 = 1 + 36 + 9 = 46

∴ x² + y² + 2x - 12y - 9 = 0 ⇒ (x + 1)² + (y - 6)² = 46