Respuesta :

Answer:

D

Step-by-step explanation:

We will solve the equation by using quadratic formula.

x=  (-b ± √(b^2-4ac))/2a

The standard form of quadratic equation is:

ax^2+bx+c=0

So by comparing with the standard form, we get:

a=1

b= -4

c=18

Putting the values in the formula

x=  (-(-4)± √((-4)^2-4(1)(18)))/2(1)  

x =  (4± √(16-72))/2

x =  (4± √(-56))/2

The minus sign in square root will introduce the imaginary symbol.  

x =  (4± √(14*4*(-1)))/2

The minus 1 can be replace by the imaginary i => i^2 = -1

x =  (4± √(14*2^2*i^2 ))/2

The terms with squares can be brought out of the square root

So,

x =  (4± 2i√14)/2

Taking 2 as common

x =  (2(2± i√(14)))/2

x = 2± i√14