Respuesta :

QUESTION 1

Recall the mnemonics; SOH

[tex]\sin L =\frac{Opposite}{Hypotenuse}[/tex]

[tex]\sin L =\frac{12}{13}[/tex]

QUESTION 2

Recall the mnemonics; CAH

[tex]\cos L =\frac{Adjacent}{Hypotenuse}[/tex]

[tex]\sin L =\frac{5}{13}[/tex]

QUESTION 3

Recall the mnemonics; TOA

[tex]\tan M =\frac{Opposite}{Adjacent}[/tex]

[tex]\tan M =\frac{5}{12}[/tex]

QUESTION 4

[tex]\sin M =\frac{Opposite}{Hypotenuse}[/tex]

[tex]\sin M =\frac{5}{13}[/tex]

QUESTION 5

a) From the Pythagoras Theorem,

[tex]AC^2+AB^2=BC^2[/tex]

[tex]AC^2+4^2=5^2[/tex]

[tex]AC^2+16=25[/tex]

[tex]AC^2=25-16[/tex]

[tex]AC^2=9[/tex]

[tex]AC=\sqrt{9}[/tex]

[tex]AC=3yd[/tex]

b) Using the cosine ratio,

[tex]\cos (m\angle B)=\frac{4}{5}[/tex]

Take the inverse cosine of both sides;

[tex] m\angle B=\cos ^{-1}(\frac{4}{5})[/tex]

[tex] m\angle B=36.86[/tex]

[tex]\therefore m\angle B=36.9\degree[/tex] to the nearest tenth.

c) [tex]m\angle B +m\angle C=90\degree[/tex]

[tex]\Rightarrow 36.9\degree +m\angle C=90\degree[/tex]

[tex]\Rightarrow m\angle C=90\degree-36.9\degree[/tex]

[tex]\Rightarrow m\angle C=53.1\degree[/tex]

QUESTION 6

a)  using the sine ratio,

[tex]\sin(51\degree)=\frac{DE}{18}[/tex]

[tex]DE=18\sin(51\degree)[/tex]

[tex]DE=13.99[/tex]

[tex]\therefore DE=14.0yd[/tex] to the nearest tenth.

b) Using the cosine ratio,

[tex]\cos (51\degree)=\frac{EF}{18}[/tex]

[tex]EF=18\cos (51\degree)[/tex]

[tex]EF=11.3yd[/tex] to the nearest tenth.

c) [tex]m\angle D+ m\angle F=90\degree[/tex]

[tex]\Rightarrow m\angle D + 51\degree=90\degree[/tex]

[tex]\Rightarrow m\angle D=90\degree-51\degree[/tex]

[tex]\Rightarrow m\angle D=39\degree[/tex]

QUESTION 7

a) Using the Pythagoras Theorem;

[tex]lG^2+GH^2=lH^2[/tex]

[tex]l15^2+GH^2=17^2[/tex]

[tex]225+GH^2=289[/tex]

[tex]GH^2=289-225[/tex]

[tex]GH^2=64[/tex]

[tex]GH=\sqrt{64}[/tex]

[tex]GH=8km[/tex]

b) Using the sine ratio,

[tex]\sin(m\angle H)=\frac{15}{17}[/tex]

[tex]m\angle H=\sin^{-1}(\frac{15}{17})[/tex]

[tex]m\angle H=61.9\degree[/tex]

c) [tex]m\angle l + m\angle H=90\degree[/tex]

[tex]m\angle l +61.9\degree=90\degree[/tex]

[tex]m\angle l =90\degree-61.9\degree [/tex]

[tex]m\angle l =28.1\degree [/tex]

QUESTION 8

We plot the points as shown in the diagram.

QUESTION 9

From the diagram, the side lengths XY and YZ can be obtained by counting the boxes. Each box is 1 unit.

This implies that;

XY =3 units

YZ=5 units.

We use Pythagoras Theorem, to obtain XZ.

This implies that;

[tex]XZ^2=XY^2+YZ^2[/tex]

[tex]XZ^2=3^2+5^2[/tex]

[tex]XZ^2=9+25[/tex]

[tex]XZ^2=34[/tex]

[tex]XZ=\sqrt{34}[/tex] units

QUESTION 10.

a) Using the tangent ratio;

[tex]\tan(m\angle X)=\frac{5}{3}[/tex]

[tex]m\angle X=\tan^[-1}(\frac{5}{3})[/tex]

[tex]m\angle X=59.0\degree[/tex]

b) [tex]m\angle Z+m\angle X=90\degree[/tex]

[tex]m\angle Z+59.0\degree=90\degree[/tex]

[tex]m\angle Z=90\degree-59.0\degree[/tex]

[tex]m\angle Z=31.0\degree[/tex]

QUESTION 11

a) Triangle BCD is shown in the attachment.

The length of side DC=|3-2|=1 unit

The length of side DB=|4-3|=1 unit

Using Pythagoras Theorem;

[tex]BC^2=DC^2+DB^2[/tex]

[tex]BC^2=1^2+1^2[/tex]

[tex]BC^2=1+1[/tex]

[tex]BC^2=2[/tex]

[tex]BC=\sqrt{2}[/tex]

b) DB is perpendicular to DC, therefore m<D=90 degrees.

The length of DB is equal the length of DC.

This implies that;

m<C=m<B=45 degrees.

QUESTION 12

[tex]\sin 30\degree=\frac{1}{2}[/tex]

QUESTION 13

[tex]\cos 30\degree=\frac{\sqrt{3} }{2}[/tex]

QUESTION 14

[tex]\tan 30\degree =\frac{\sqrt{3} }{3}[/tex]

QUESTION 15

[tex]\tan 45\degree =1[/tex]

QUESTION 16

[tex]\cos 45\degree =\frac{\sqrt{2} }{2}[/tex]

QUESTION 17

[tex]\tan 45\degree =1[/tex]

Check attachment for  the rest

Ver imagen kudzordzifrancis
Ver imagen kudzordzifrancis
Ver imagen kudzordzifrancis
Ver imagen kudzordzifrancis
Ver imagen kudzordzifrancis