Respuesta :

Answer:

The rectangular prism has the greatest surface area

Step-by-step explanation:

Verify the surface area of each container

case A) A cone

The surface area of a cone is equal to

[tex]SA=\pi r^{2} +\pi rl[/tex]

we have

[tex]r=6/2=3\ in[/tex] ----> the radius is half the diameter

[tex]l=10\ in[/tex]

substitute the values

[tex]SA=(3.14)(3)^{2} +(3.14)(3)(10)=122.46\ in^{2}[/tex]

case B) A cylinder

The surface area of a cylinder is equal to

[tex]SA=2\pi r^{2} +2\pi rh[/tex]

we have

[tex]r=6/2=3\ in[/tex] ----> the radius is half the diameter

[tex]h=10\ in[/tex]

substitute the values

[tex]SA=2(3.14)(3)^{2} +2(3.14)(3)(10)=244.92\ in^{2}[/tex]

case C) A square pyramid

The surface area of a square pyramid is equal to

[tex]SA=b^{2} +4[\frac{1}{2}bh][/tex]

we have

[tex]b=6\ in[/tex] ----> the length side of the square

[tex]h=10\ in[/tex] ----> the height of the triangular face

substitute the values

[tex]SA=6^{2} +4[\frac{1}{2}(6)(10)]=156\ in^{2}[/tex]

case D) A rectangular prism

The surface area of a rectangular prism is equal to

[tex]SA=2b^{2} +4[bh][/tex]

we have

[tex]b=6\ in[/tex] ----> the length side of the square base

[tex]h=10\ in[/tex] ----> the height of the rectangular face

substitute the values

[tex]SA=2(6)^{2} +4[(6)(10)]=312\ in^{2}[/tex]

Answer:

The rectangular prism has the greatest surface area

Step-by-step explanation:

mark me brainy plz!