Respuesta :

Answer:

12

Step-by-step explanation:

We can use the property of exponents  [tex]\frac{a^b}{a^c}=a^{b-c}[/tex]  over here.

Let's use this property to write:

[tex]\frac{a^n}{a^3}\\=a^{n-3}[/tex]

This is equal to a^9, hence, n - 3 = 9. Let's solve for n:

[tex]n-3=9\\n=9+3\\n=12[/tex]

n = 12

Answer:

option C

12

Step-by-step explanation:

Given in the question an expression

[tex]\frac{a^{n} }{a^{3} }=a^{9}[/tex]

To solve for n we will use rules of exponent

cross multiply

[tex]a^{n}=a^{9}a^{3}[/tex]

apply product rule

[tex]a^{n}=a^{9+3}[/tex]

[tex]a^{n}=a^{12}[/tex]

Apply logarithm on both sides of equation

[tex]lna^{n}=lna^{12}[/tex]

apply power rule of logarithm

nln(a) = 12ln(a)

ln(a) will cancel out on each side so we are left with

n= 12