Respuesta :

y varies directly with x if and only if there exists a constant k such that

[tex]y=kx[/tex]

for every input/output couple. If so, we have

[tex]\dfrac{y}{x}=k[/tex]

Let's see if our input/output couples satisfy this request: the first couple yields

[tex]\dfrac{y}{x} = \dfrac{6.4}{4}=1.6[/tex]

The second couple yields

[tex]\dfrac{y}{x} = \dfrac{11.2}{7}=1.6[/tex]

The third couple yields

[tex]\dfrac{y}{x} = \dfrac{16}{10}=1.6[/tex]

The last couple yields

[tex]\dfrac{y}{x} = \dfrac{20.8}{13}=1.6[/tex]

So, the ratio is indeed constant