Respuesta :

Answer:

Option A. [tex]-10[/tex]

Step-by-step explanation:

we know that

The formula to solve a quadratic equation of the form [tex]ax^{2} +bx+c=0[/tex] is equal to

[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]x^{2} +10x+24=0[/tex]  

so

[tex]a=1\\b=10\\c=24[/tex]

substitute in the formula

[tex]x=\frac{-10(+/-)\sqrt{10^{2}-4(1)(24)}} {2(1)}[/tex]

[tex]x=\frac{-10(+/-)\sqrt{4}} {2}[/tex]

[tex]x=\frac{-10(+/-)2} {2}[/tex]

[tex]x=\frac{-10(+)2} {2}=-4[/tex]

[tex]x=\frac{-10(-)2} {2}=-6[/tex]

The roots are -4 and -6

Find the sum

[tex]-4-6=-10[/tex]