Respuesta :

Answer:

x< -1/4

Step-by-step explanation:

- 3/5 x + 1/5 > 7/20

Subtract 1/5 from each side

- 3/5 x + 1/5-1/5 > 7/20-1/5

-3/5x > 7/20 -1/5

Get a common denominator

-3/5x > 7/20 -1/5*4/4

-3/5x > 7/20 -4/20

-3/5x> 3/20

Multiply by -5/3 to isolate x

Remember that flips the inequality

-5/3* -3/5 x < 3/20*-5/3

x < -1/4

[ Answer ]

[tex]\boxed{X \ < \ -\frac{1}{4} }[/tex]

[ Explanation ]

  • Solve: [tex]-\frac{3}{5}x[/tex] + [tex]\frac{1}{5}[/tex] > [tex]\frac{7}{20}[/tex]

-----------------------------------------

  • Subtract [tex]\frac{1}{5}[/tex] From Both Sides

[tex]-\frac{3}{5}x[/tex] + [tex]\frac{1}{5}[/tex] - [tex]\frac{1}{5}[/tex] > [tex]\frac{7}{20}[/tex] - [tex]\frac{1}{5}[/tex]

  • Simplify

[tex]-\frac{3}{5}x[/tex] > [tex]\frac{3}{20}[/tex]

  • Multiply Both Sides By -1 (Reverse Inequality)

([tex]-\frac{3}{5}x[/tex])(-1) < [tex]\frac{3(-1)}{20}[/tex]

  • Simplify

[tex]\frac{3}{5}x[/tex] < [tex]-\frac{3}{20}[/tex]

  • Multiply Both Sides By 5

5 · [tex]\frac{3}{5}x[/tex] < 5([tex]-\frac{3}{20}[/tex])

  • Simplify

3x < [tex]-\frac{3}{4}[/tex]

  • Divide Both Sides By 3

[tex]\frac{3x}{3}[/tex] < [tex]\frac{-\frac{3}{4} }{3}[/tex]

  • Simplify

X < [tex]-\frac{1}{4}[/tex]

[tex]\boxed{[ \ Eclipsed \ ]}[/tex]