Respuesta :
Answer:
x< -1/4
Step-by-step explanation:
- 3/5 x + 1/5 > 7/20
Subtract 1/5 from each side
- 3/5 x + 1/5-1/5 > 7/20-1/5
-3/5x > 7/20 -1/5
Get a common denominator
-3/5x > 7/20 -1/5*4/4
-3/5x > 7/20 -4/20
-3/5x> 3/20
Multiply by -5/3 to isolate x
Remember that flips the inequality
-5/3* -3/5 x < 3/20*-5/3
x < -1/4
[ Answer ]
[tex]\boxed{X \ < \ -\frac{1}{4} }[/tex]
[ Explanation ]
- Solve: [tex]-\frac{3}{5}x[/tex] + [tex]\frac{1}{5}[/tex] > [tex]\frac{7}{20}[/tex]
-----------------------------------------
- Subtract [tex]\frac{1}{5}[/tex] From Both Sides
[tex]-\frac{3}{5}x[/tex] + [tex]\frac{1}{5}[/tex] - [tex]\frac{1}{5}[/tex] > [tex]\frac{7}{20}[/tex] - [tex]\frac{1}{5}[/tex]
- Simplify
[tex]-\frac{3}{5}x[/tex] > [tex]\frac{3}{20}[/tex]
- Multiply Both Sides By -1 (Reverse Inequality)
([tex]-\frac{3}{5}x[/tex])(-1) < [tex]\frac{3(-1)}{20}[/tex]
- Simplify
[tex]\frac{3}{5}x[/tex] < [tex]-\frac{3}{20}[/tex]
- Multiply Both Sides By 5
5 · [tex]\frac{3}{5}x[/tex] < 5([tex]-\frac{3}{20}[/tex])
- Simplify
3x < [tex]-\frac{3}{4}[/tex]
- Divide Both Sides By 3
[tex]\frac{3x}{3}[/tex] < [tex]\frac{-\frac{3}{4} }{3}[/tex]
- Simplify
X < [tex]-\frac{1}{4}[/tex]
[tex]\boxed{[ \ Eclipsed \ ]}[/tex]