Respuesta :

Answer:

2.63 mm

Explanation:

The capacitance of a parallel-plate capacitor is given by

[tex]C=\frac{\epsilon_0 A}{d}[/tex]

where

[tex]\epsilon_0[/tex] is the vacuum permettivity

A is the area of each plate of the capacitor

d is the separation between the two plates

In this problem, we know:

[tex]C=1.97 pF=1.97\cdot 10^{-12}F[/tex] is the capacitance

[tex]A=5.86 cm^2 = 5.86\cdot 10^{-4} m^2[/tex] is the area

Re-arranging the equation and substituting numbers, we can find the separation between the plates, d:

[tex]d=\frac{\epsilon_0 A}{C}=\frac{(8.85\cdot 10^{-12} F/m)(5.86\cdot 10^{-4} m^2)}{1.97\cdot 10^{-12}F}=2.63\cdot 10^{-3} m=2.63 mm[/tex]