Tatiana is practicing shooting. The coordinates (in m) of the barrel of her gun and the target are (5, 3, 1) and (38, 41, 3). What is the distance between the gun and the target?

Respuesta :

Answer:

[tex]d=\sqrt{2,537}\ m[/tex]   or  [tex]d=50.37\ m[/tex]

Step-by-step explanation:

we know that

the formula to calculate the distance between two points in three dimensions is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}+(z2-z1)^{2}}[/tex]

Let

[tex]A(5,3,1)[/tex]  -----> coordinates of the barrel of her gun

[tex]B(38,41,3)[/tex]  -----> coordinates of the target

substitute the values

[tex]d=\sqrt{(41-3)^{2}+(38-5)^{2}+(3-1)^{2}}[/tex]

[tex]d=\sqrt{(38)^{2}+(33)^{2}+(2)^{2}}[/tex]

[tex]d=\sqrt{1,444+1,089+4}[/tex]

[tex]d=\sqrt{2,537}\ m[/tex]

[tex]d=50.37\ m[/tex]