Answer:
[tex]d=\sqrt{2,537}\ m[/tex] or [tex]d=50.37\ m[/tex]
Step-by-step explanation:
we know that
the formula to calculate the distance between two points in three dimensions is equal to
[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}+(z2-z1)^{2}}[/tex]
Let
[tex]A(5,3,1)[/tex] -----> coordinates of the barrel of her gun
[tex]B(38,41,3)[/tex] -----> coordinates of the target
substitute the values
[tex]d=\sqrt{(41-3)^{2}+(38-5)^{2}+(3-1)^{2}}[/tex]
[tex]d=\sqrt{(38)^{2}+(33)^{2}+(2)^{2}}[/tex]
[tex]d=\sqrt{1,444+1,089+4}[/tex]
[tex]d=\sqrt{2,537}\ m[/tex]
[tex]d=50.37\ m[/tex]