Answer:
Step-by-step explanation:
These are the properties of logarithms that you have to use to solve the equation:
[tex]logA+logB=log (AB)\\ \\ logA-logB=log(\frac{A}{B} )[/tex]
[tex]logA=logB[/tex]⇒[tex]A=B[/tex]
With that you can follow these steps and find the value of x:
[tex]log3+logx-log(x+1)=log2\\ \\\\ log\frac{3x}{x+1} =log2\\ \\ \\ \frac{3x}{x+1} =2\\ \\ \\ 3x=2(x+1)\\ \\ \\ 3x=2x+2\\ \\ \\ x=2[/tex]