Whats the roots of the following three problems:

1. [tex]F(x) = \frac{(x-3)(x-1)}{(x-1)(x+2)}[/tex]
2.[tex]F(x)\frac{5x^{2}-10x+5 }{2x^{2}-5x +3}[/tex]
3. [tex]F(x) = \frac{x^{3}-8 }{x^{2}-6x+8 }[/tex]

Respuesta :

QUESTION 1

The given function is

[tex]f(x)=\frac{(x-3)(x-1)}{(x-1)(x+2)}[/tex]

We simplify to get;

[tex]f(x)=\frac{x-3}{x+2}[/tex]

This function is equal to zero when [tex]x-3=0[/tex]

[tex]\Rightarrow x=3[/tex]

QUESTION 2

The given function is

[tex]f(x)=\frac{5x^2-10x+5}{2x^2-5x+3}[/tex]

[tex]f(x)=\frac{5(x^2-2x+1)}{2x^2-5x+3}[/tex]

We factor to get;

[tex]f(x)=\frac{5(x-1)^2}{(2x-3)(x-1)}[/tex]

[tex]f(x)=\frac{5(x-1)}{(2x-3)}[/tex]

This function equals zero when

[tex]5(x-1)=0[/tex]

[tex]x=1[/tex]

QUESTION 3

The given function is

[tex]f(x)=\frac{x^3-8}{x^2-6x+8}[/tex]

We factor to get,

[tex]f(x)=\frac{(x-2)(x^2+2x+4)}{(x-2)(x+4)}[/tex]

[tex]f(x)=\frac{x^2+2x+4}{x+4}[/tex]

The function equals zero when [tex]x^2+2x+4=0[/tex]

[tex]D=b^2-4ac[/tex]

[tex]D=2^2-4(1)(4)[/tex]

[tex]D=-12[/tex]

Hence the equation has no real roots.

The complex roots are

[tex]x=-\sqrt{3}i-1[/tex] or [tex]x=-1+\sqrt{3}i[/tex]