Respuesta :
Answer:
The slant height is [tex]13m[/tex]
Step-by-step explanation:
The slant height of the cone, [tex]l[/tex] , can be found using Pythagoras Theorem.
[tex]l^2=12^2+(\frac{10}{2})^2[/tex]
[tex]l^2=12^2+(5)^2[/tex]
[tex]l^2=144+25[/tex]
[tex]l^2=169[/tex]
[tex]l=\sqrt{169}[/tex]
[tex]l=13m[/tex]
Answer: first option
Step-by-step explanation:
You must apply the Pythagorean theorem:
[tex]s=\sqrt{b^{2}+c^{2}}[/tex]
Where s is the hypotenuse or, in this case the slant height, and b and c are the other legs.
Therefore you can see in the figure that:
b=5m and c=12m
Then the slant height of the cone is the shown below:
[tex]s=\sqrt{(5m)^{2}+(12m)^{2}}=13m[/tex]