Respuesta :

Answer:

The slant height is [tex]13m[/tex]

Step-by-step explanation:

The slant height of the cone, [tex]l[/tex] , can be found using Pythagoras Theorem.

[tex]l^2=12^2+(\frac{10}{2})^2[/tex]

[tex]l^2=12^2+(5)^2[/tex]

[tex]l^2=144+25[/tex]

[tex]l^2=169[/tex]

[tex]l=\sqrt{169}[/tex]

[tex]l=13m[/tex]

Answer: first option

Step-by-step explanation:

You must apply the Pythagorean theorem:

[tex]s=\sqrt{b^{2}+c^{2}}[/tex]

Where s is the hypotenuse or, in this case the slant height, and b and c are the other legs.

Therefore you can see in the figure that:

b=5m and c=12m

Then the slant height of the cone is the shown below:

[tex]s=\sqrt{(5m)^{2}+(12m)^{2}}=13m[/tex]