Respuesta :

Answer:

[tex]-12<x<3[/tex]

In interval notation: (-12,3)

Step-by-step explanation:

To solve the expression shown in the problem you must:

- Subtract 36 from both sides, then:

[tex]x^{2}+9x-36<36-36\\x^{2}+9x-36<0[/tex]

- Now you must find two number whose sum is 9 and whose produt is 36. These would be -3 and 12. Then, you have:

[tex](x-3)(x+12)<0[/tex]

- Therefore the result is:

[tex]-12<x<3[/tex]

In interval notation:

(-12,3)

Answer:

[tex]\boxed{(-12,3)}[/tex]

Step-by-step explanation:

First of all, you must manage this inequality as follows:

[tex]x^2+9x-36<0[/tex]

So the roots of the polynomial are:

[tex]x=-12 \ and \ x=3[/tex]

So we can write the inequality as follows:

[tex](x-3)(x+12)<0[/tex]

               -12     3

x-3       -       -     -     +    +

_________________________

x+12   -       -      +     +     +

_________________________

        +       +      -      +    +

As you can see from this table, the solution of the inequality in Interval Notation using Grouping Symbols is:

[tex]\boxed{(-12,3)}[/tex]