Respuesta :

Answer:

sin O = [tex]\frac{3}{5}[/tex]

Step-by-step explanation:

given tan O = [tex]\frac{3}{4}[/tex] = [tex]\frac{opposite}{adjacent}[/tex]

Then this is a right triangle with legs 3 and 4

Using Pythagoras' identity then the hypotenuse (h ) is

h = [tex]\sqrt{3^2+4^2}[/tex] = [tex]\sqrt{25}[/tex] = 5, hence

sin O = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{3}{5}[/tex]

The value of  [tex]sin(\theta)[/tex]  is  [tex]\dfrac{3}{5}[/tex].

Given that:

[tex]tan(\theta) = \dfrac{3}{4}[/tex]

To find :  value of [tex]sin(\theta)[/tex].

Calculations will go as follows:

We can either use inverse trigonometric functions to evaluate sine, but we will use simple method by using Pythagoras Theorem:

[tex]tan(\theta) = \dfrac{Perpendicular}{Base} = \dfrac{3}{4}\\[/tex]

Thus, we have:

Perpendicular = 3x,

Base = 4x,  (we used x so that we cover all Perpendicular and Base such that their ratio is 3/4)

Thus, by Pythagoras Theorem, we have:

[tex]H^2 = P^2 + B^2\\H = \sqrt{(3x)^2 + (4x)^2 } = \sqrt{25x^2} = 5x[/tex]

Thus, we have:

[tex]sin(\theta) = \dfrac{Perpendicular}{Hypotenuse}\\sin(\theta) = \dfrac{3x}{5x} = \dfrac{3}{5}[/tex]

Thus, the value of  [tex]sin(\theta)[/tex]  is  [tex]\dfrac{3}{5}[/tex].

Learn more about trigonometric functions here:

https://brainly.com/question/6904750