Respuesta :

Answer:  [tex]\bold{-\dfrac{161}{289}}[/tex]

Step-by-step explanation:

Given: cos x = [tex]\dfrac{8}{17}[/tex], x is in Quadrant 4

Use Pythagorean Theorem to find sin x:

8² + y² = 17²    

      y² = 17² - 8²

      y² = 289 - 64

      y² = 225

      y = 15

→    sin x = [tex]-\dfrac{15}{17}[/tex]

Use the double angle formula to find cos (2x):

[tex]cos (2x) = cos^2 x - sin^2 x\\\\.\qquad=\bigg(\dfrac{8}{17}\bigg)^2-\bigg(-\dfrac{15}{17}\bigg)^2\\\\\\.\qquad=\dfrac{64}{289}-\dfrac{225}{289}\\\\\\.\qquad=-\dfrac{161}{289}[/tex]

             

Answer:

- [tex]\frac{161}{289}[/tex]

Step-by-step explanation:

Using the trigonometric identity

cos(2x) = 2cos²x - 1

given cosx = [tex]\frac{8}{17}[/tex], then

cos(2x) = 2([tex]\frac{8}{17}[/tex])² - 1

           = 2 × [tex]\frac{64}{289}[/tex] - [tex]\frac{289}{289}[/tex]

          = [tex]\frac{128}{289}[/tex] - [tex]\frac{189}{189}[/tex] = - [tex]\frac{161}{289}[/tex]