Respuesta :
Here is your answer
[tex][I am using ☆ instead of theta][/tex]
[tex]cos☆= -8/17[/tex]
[tex]{cos}^{2}☆= {(-8/17)}^{2}= 64/289[/tex]
Now,
[tex]sin☆= \sqrt{1-{cos}^{2}☆}[/tex]
[tex]sin☆= \sqrt{1- (64/289)}[/tex]
[tex]sin☆= \sqrt{(289-64)/289}[/tex]
[tex]sin☆= \sqrt{225/289}[/tex]
[tex]sin☆= 15/17 [/tex]
Since, 180<theta<270
so, it must lie in 3rd quadrant.
In third quadrant
[tex]sin☆ is -ve[/tex]
[tex]Hence, sin☆= -15/17[/tex]
HOPE IT IS USEFUL
[tex][I am using ☆ instead of theta][/tex]
[tex]cos☆= -8/17[/tex]
[tex]{cos}^{2}☆= {(-8/17)}^{2}= 64/289[/tex]
Now,
[tex]sin☆= \sqrt{1-{cos}^{2}☆}[/tex]
[tex]sin☆= \sqrt{1- (64/289)}[/tex]
[tex]sin☆= \sqrt{(289-64)/289}[/tex]
[tex]sin☆= \sqrt{225/289}[/tex]
[tex]sin☆= 15/17 [/tex]
Since, 180<theta<270
so, it must lie in 3rd quadrant.
In third quadrant
[tex]sin☆ is -ve[/tex]
[tex]Hence, sin☆= -15/17[/tex]
HOPE IT IS USEFUL
Answer:
sinΘ = - [tex]\frac{15}{17}[/tex]
Step-by-step explanation:
Using the trigonometric identity
sin²x + cos²x = 1
⇒ sinx = ± [tex]\sqrt{1-cos^2x}[/tex]
Since 180 < Θ < 270 then sinΘ < 0
sinΘ = - [tex]\sqrt{1-(-8/17)^2}[/tex]
= - [tex]\sqrt{1-\frac{64}{289} }[/tex]
= - [tex]\sqrt{\frac{225}{289} }[/tex] = - [tex]\frac{15}{17}[/tex]