If h(x) = f[tex]h(x) = f[/tex] ° [tex]g) (x)[/tex] and [tex]h(x) = \sqrt[3]{x+3}[/tex], find [tex]g(x)[/tex] if [tex]f(x) = \sqrt[3]{x +2}[/tex] ·

Respuesta :

Answer:

g(x) = x+1

Step-by-step explanation:


f(x) = [tex]\sqrt[3]{x+2}[/tex]

h(x) =[tex]\sqrt[3]{x+3}[/tex]

h(x)= (fog)(x)= f(g(x))= [tex]\sqrt[3]{g(x)+2}[/tex]

so   [tex]\sqrt[3]{x+3}[/tex] =[tex]\sqrt[3]{g(x)+2}[/tex]

    cubing both sides ,we get

      x+3 = g(x)  +2

      solving for g(x) ,we get

g(x) = x+1