What are the relative frequencies to the nearest hundredth of the columns of the two-way table? A B Group 1 102 34 Group 2 18 14

Respuesta :

Answer:

Column A: 102+18=120

Group 1:

102/120=0.85

Group 2:

18/120=0.15

Column B: 34+14=48

Group 1:

34/48=0.71

Group 2:

14/48=0.29

Hope this helps. :)

Answer:  The relative frequencies  to the nearest hundredth of the columns of the two-way table is given by :-

                                    A                       B

Group 1                        0.85                   0.71

Group 2                        0.15                   0.29

Step-by-step explanation:

Given two-way table :  A                       B

Group 1                        10                     34

Group 2                         18                      14

Total data value in column A = [tex]102+18=120[/tex]

Total data value in column B = [tex]34+14=48[/tex]

Now, the relative frequency for Group 1 with column A =[tex]\frac{102}{120}=0.85[/tex]

The relative  frequency for Group 1 with column B =[tex]\frac{34}{48}=0.708333333..\approx0.71[/tex]

Now, the relative frequency for Group 2 with column A =[tex]\frac{18}{120}=0.15[/tex]

The relative  frequency for Group 2 with column B =[tex]\frac{14}{48}=0.2916666666..\approx0.29[/tex]