Respuesta :

Answer:

All the intervals that contain the number [tex]-2[/tex] are solution of the problem

Step-by-step explanation:

we know that

The equation of a vertical parabola into vertex form is equal to

[tex]f(x)=a(x-h)^{2}+k[/tex]

where

(h,k) is the vertex of the parabola

In this problem we have

[tex]f(x)=(x+3)(x+1)[/tex]

Convert to vertex form

[tex]f(x)=x^{2}+x+3x+3[/tex]

[tex]f(x)=x^{2}+4x+3[/tex]

Group terms that contain the same variable, and move the constant to the opposite side of the equation

[tex]f(x)-3=x^{2}+4x[/tex]

Complete the square. Remember to balance the equation by adding the same constants to each side.

[tex]f(x)-3+4=x^{2}+4x+4[/tex]

[tex]f(x)+1=x^{2}+4x+4[/tex]

Rewrite as perfect squares

[tex]f(x)+1=(x+2)^2[/tex]

[tex]f(x)=(x+2)^2-1[/tex] -------> equation in vertex form

The vertex is the point [tex](-2,-1)[/tex]

The x-coordinate of the vertex is [tex]-2[/tex]