Respuesta :

gmany

Answer:

y = 0 or y = -2/3

Step-by-step explanation:

[tex]3y^3\left(y^2+\dfrac{2}{3}y\right)=0[/tex]

The product is zero if one of the factors is equal to zero. Therefore

[tex]3y^3\left(y^2+\dfrac{2}{3}y\right)=0\iff3y^3=0\ \vee\ y^2+\dfrac{2}{3}y=0\\\\3y^3=0\qquad\text{divide both sides by 3}\\\\y^3=0\to \boxed{y=0}\\\\y^2+\dfrac{2}{3}y=0\\\\y\left(y+\dfrac{2}{3}\right)=0\iff y=0\ \vee\ y+\dfrac{2}{3}=0\to \boxed{y=-\dfrac{2}{3}}[/tex]

Answer:

y =0   y = -2/3

Step-by-step explanation:

3y^3(y^2+ 2/3y)=0

Factor out a y

3y^3 *y (y+2/3) =0

3y^4 (y+2/3) =0

Using the zero product property

3y^4 =0    y+2/3 =0

y^4 = 0  y+2/3-2/3 =0

y =0   y = -2/3