Respuesta :
Answer:
x = -7.12, 1.12
Step-by-step explanation:
We are given an equation and asked to solve it with quadratic formula
Quadratic formula is given as:
[tex]x = \frac{-b +- \sqrt{b^{2}-4ac } }{2a}[/tex]
Given equation: x² - 8 = -6x
Rewriting the equation
x² - 8 + 6x = 0
x² + 6x - 8 = 0
Where a = 1; b = 6; c = -8
Putting the values of a, b and c in quadratic formula
[tex]x = \frac{-6 +- \sqrt{6^{2}-4(1)(-8) } }{2(1)}[/tex]
[tex]x = \frac{-6 +- \sqrt{36+32}}{2}[/tex]
[tex]x = \frac{-6 +- \sqrt{68}}{2}[/tex]
[tex]x = \frac{-6 +- 8.25}{2}[/tex]
[tex]x = \frac{-6 + 8.25}{2}[/tex]
x = 1.12
[tex]x = \frac{-6 - 8.25}{2}[/tex]
x = -7.12
x = -7.12, 1.12
Answer:
The correct answer option is a. –7.12, 1.12.
Step-by-step explanation:
We are given the following equation and we are to solve it using the quadratic formula:
[tex]x^2 - 8 = -6x[/tex]
Re-arranging this equation in order of decreasing power:
[tex] x^{2} + 6x - 8 = 0 [/tex]
Using the quadratic formula:
[tex] x = \frac {-b + - \sqrt{b^2 - 4ac} }{2a}[/tex]
Substituting the given values in the formula to get:
[tex]x=\frac{-6+-\sqrt{(6)^2-4(1)(-8)} }{2(1)}[/tex]
[tex]x=\frac{-6+-\sqrt{68} }{2}[/tex]
[tex]x=\frac{-6+\sqrt{68} }{2} , x= \frac{-6-\sqrt{68} }{2}[/tex]
[tex]x=1.12, x=-7.12[/tex]