Respuesta :
Answer:
Option d is correct 5, -4
Step-by-step explanation:
Given equation x² - 20 = x
rewriting the above equation
x² - x - 20 = 0
[tex]x = \frac{-b +- \sqrt{b^{2}-4ac}}{2a}[/tex]
where a = 1; b = -1; c = -20
put values of a, b and c in the formula
[tex]x = \frac{-(-1) +- \sqrt{(-1)^{2}-4(1)(-20)}}{2(1)}[/tex]
[tex]x = \frac{1 +- \sqrt{1+80}}{2}[/tex]
[tex]x = \frac{1 +- \sqrt{81}}{2}[/tex]
[tex]x = \frac{1 +- 9}{2}[/tex]
[tex]x = \frac{1 + 9}{2}[/tex]
x = 5
[tex]x = \frac{1 - 9}{2}[/tex]
x = -4
Answer:
The correct answer option is d. 5, -4.
Step-by-step explanation:
We are given the following equation and we are to solve it using the quadratic formula:
[tex]x^2 - 20 = x[/tex]
Re-arranging this equation in order of decreasing power:
[tex]x^2-x-20=0[/tex]
Using the quadratic formula:
[tex] x = \frac {-b + - \sqrt{b^2 - 4ac} }{2a}[/tex]
Substituting the given values in the formula to get:
[tex]x=\frac{-(-1)+-\sqrt{(-1)^2-4(1)(-20)} }{2(1)}[/tex]
[tex]x=\frac{1+-\sqrt{81} }{2}[/tex]
[tex]x=\frac{1+\sqrt{81} }{2} , x= \frac{1-\sqrt{81}{2}[/tex]
[tex]x=5, x=-4[/tex]