Respuesta :

Answer:

m<HGI=21°

Step-by-step explanation:

we know that

If GH bisects m<FGI then

m<FGH=m<HGI

substitute the values

(2x+1)°=(3x-9)°

solve for x

3x-2x=1+9

x=10°

The measure of angle HGI is equal to

(3x-9)° ------> substitute the value of x

3*10-9=21°

m<HGI=21°

Answer:

Option B is correct.

the measure of angle HGI is 21°

Step-by-step explanation:

By Angle bisector definition:

A line that bisects the angle into equal angle

From the given figure, we have;

[tex]\angle FGH = (2x+1)^{\circ}[/tex] and  [tex]\angle HGI = (3x-9)^{\circ}[/tex]

it is given that: GH bisects ∠FGI.

then by definition:

[tex]\angle FGH = \angle HGI[/tex]

Substitute the given values we have;

[tex]2x+1 = 3x -9[/tex]

Add 9 to both sides we get;

[tex]2x+10= 3x[/tex]

Subtract 2x from both sides we get;

[tex]10= x[/tex]

or

[tex]x= 10[/tex]

then;

[tex]\angle HGI = 3x-9 = 3(10)-9 = 30-9 = 21^{\circ}[/tex]

Therefore, the measure of angle HGI is 21°