Respuesta :

Answer: [tex]x=3\\x=-2[/tex]


Step-by-step explanation:

1. You have the following expression:

[tex]\frac{x^{2}+8x+4}{x^{2}-x-6}[/tex]

3. The denominatoir cannot be zero, so, you must find its roots:

[tex]x^{2}-x-6=0[/tex]

Factorizing it, you obtain:

[tex](x-3)(x+2)=0\\x=3\\x=-2[/tex]

 Then:

 [tex]\frac{x^{2}+8x+4}{(x-3)(x+2)}[/tex]

4. Therefore, the values that are discontinuity of  [tex]\frac{x^{2}+8x+4}{x^{2}-x-6}[/tex] are:

[tex]x=3\\x=-2[/tex]


Answer:

x=3

x=-2

Step-by-step explxanation: