Respuesta :
to find the optimized value you need to find where the vertex(tip) of the parabola
use
[tex] - \frac{b}{2a} [/tex]
to find the optimized x value
y= -w^2 +100w + 0
[tex] - \frac{100}{ 2 \times - 1} [/tex]
x = 50
answer: 50
use
[tex] - \frac{b}{2a} [/tex]
to find the optimized x value
y= -w^2 +100w + 0
[tex] - \frac{100}{ 2 \times - 1} [/tex]
x = 50
answer: 50
Answer:
50 m
Step-by-step explanation:
We are given that
Width of garden =w
Perimeter of rectangular garden=200 m
We know that
Perimeter of rectangle=[tex]2(l+ b)[/tex]
[tex]200=2(L+w)[/tex]
[tex]l+w=\frac{200}{2}=100[/tex]
[tex]L=100-w[/tex]
Area of garden [tex]A(w)=-w^2+100w[/tex]
We have to find the side width that will produce the maximum garden area.
Differentiate w.r.t w
[tex]\frac{d(A)}{dw}=-2w+100[/tex]
Substitute [tex]\frac{dA}{dw}=0[/tex]
[tex]-2w+100=0[/tex]
[tex]2w=100[/tex]
[tex]w=\frac{100}{2}=50[/tex]
Again differentiate w.r.t w
[tex]\frac{d^2A}{dw^2}=-2 <0[/tex]
Hence, the garden area is maximum at w=50 m
Therefore, width of rectangular garden=50 m