Answer:
Figure 1: ⇒ m∠A = 77°
Figure 2: ⇒ m∠A = 59°
Figure 3: ⇒ m∠B = 140°
Figure 4: ⇒ m∠A = 59°
Figure 5: ⇒ m∠C = 92°
Step-by-step explanation:
Figure 1:
∵ ABCD is inscribed quadrilateral in a circle
∴ m∠A + m∠C = 180° ⇒ cyclic quadrilateral
∴ 2x + 9 + 3x + 1 = 180
∴ 5x + 10 = 180 ⇒ ∴5x = 180 - 10 = 170
∴ x = 170 ÷ 5 = 34
∵ m∠A = (2x + 9)°
∴ m∠A = (2 × 34) + 9 = 77°
Figure 2:
∵ ABCD is inscribed quadrilateral in a circle
∴ m∠A + m∠C = 180° ⇒ cyclic quadrilateral
∵ m∠C = 121°
∴ m∠A = 180 - 121 = 59°
Figure 3:
∵ ABCD is inscribed quadrilateral in a circle
∴ m∠B + m∠D = 180° ⇒ cyclic quadrilateral
∴ x + (4x - 20) = 180 ⇒ x + 4x -20 =180
∴ 5x = 180 + 20 = 200
∴ x = 200 ÷ 5 = 40
∴ m∠B = 4 × 40 - 20 = 140°
Figure 4:
∵ ABCD is inscribed quadrilateral in a circle
∴ m∠A + m∠C = 180° ⇒ cyclic quadrilateral
∵ m∠C = 121
∴ m∠A = 180 -121 = 59°
Figure 5:
∵ ABCD is inscribed quadrilateral in a circle
∴ m∠B + m∠D = 180° ⇒ cyclic quadrilateral
∴ x° + 116° = 180°
∴ x = 180° - 116° = 64°
∵ m∠A = 2x - 40
∴ m∠A = 2(64) - 40 = 88°
∵ m∠A + m∠C = 180°
∴ m∠C = 180 - 88 = 92°