Respuesta :

Same thing again Apply the same rule
Ver imagen eric271828

Answer:

Value of z is 3/8.

Step-by-step explanation:

Given:

[tex](\frac{1}{4})^{3z-1}=16^{z+2}\times64^{z-2}[/tex]

We need to solve the given expression.

Consider,

[tex](\frac{1}{4})^{3z-1}=16^{z+2}\times64^{z-2}[/tex]

[tex](\frac{1}{2^2})^{3z-1}=(2^4)^{z+2}\times(2^6)^{z-2}[/tex]

Now, using law of exponent [tex](x^a)^b=x^{ab}[/tex]

[tex]((\frac{1}{2})^2)^{3z-1}=(2)^{4(z+2)}\times(2)^{6(z-2)}[/tex]

[tex](\frac{1}{2})^{2(3z-1)}=2^{4(z+2)}\times2^{6(z-2)}[/tex]

Now using Result of Exponent on LHS [tex]x^{-a}=(\frac{1}{x})^a[/tex]

[tex]2^{-2(3z-1)}=2^{4(z+2)}\times2^{6(z-2)}[/tex]

Now using another law of exponent on RHS, [tex]x^a\times a^b=x^{a+b}[/tex]

[tex]2^{-2(3z-1)}=2^{4(z+2)+6(z-2)}[/tex]

[tex]2^{2-6z}=2^{4z+8+6z-12}[/tex]

[tex]2^{2-6z}=2^{10z-4}[/tex]

By comparing Exponent of both sides, we get

2 - 6z = 10z - 4

2 + 4 = 10z + 6z

16z = 6

z = 6/16

z = 3/8

Therefore, Value of z is 3/8.