Respuesta :

Answer:

The major-axis runs along the x-axis.

Step-by-step explanation:

Answer:

Option B - x-axis.                                  

Step-by-step explanation:

Given : Equation [tex]x^2+4y^2=36[/tex]

To find : The major axis runs along?

Solution :

The given equation is an ellipse the general form of an ellipse is

[tex]\frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1[/tex]

Converting into general form of an ellipse,

[tex]x^2+4y^2=36[/tex]

Divide by 36 both side,

[tex]\frac{x^2}{36}+\frac{4y^2}{36}=\frac{36}{36}[/tex]

[tex]\frac{x^2}{36}+\frac{y^2}{9}=1[/tex]

[tex]\frac{x^2}{6^2}+\frac{y^2}{3^2}=1[/tex]

Here, a=6 and b=3

Since, a>b then the major axis of the ellipse is parallel to the  x-axis.

Therefore, The major axis runs along x-axis of the equation [tex]x^2+4y^2=36[/tex]

So, Option B is correct.