Respuesta :

Answer:

f(g(x)) = 50x^2 -1

g(f(x)) = 10x^2 - 5

Step-by-step explanation:

Given: f(x) = 2x^2 -1 and g(x) = 5x

f(g(x)) = f.g(x)

Here we have to replace x by 5x in f(x) function

= 2(5x)^2 - 1

= 2(25x^2) - 1

f(g(x)) = 50x^2 -1

Now we have to find g(f(x))

We have to replace x by 2x^2 - 1 in g(x) function.

g(f(x)) = 5(2x^2 -  1)

g(f(x)) = 10x^2 - 5

Thank you.

Hope you will understand the concept.

Thank you.

Answer:

[tex] f ( g (x)) [/tex] [tex]=2(5x)^2-1=2(25x^2)-1=50x^2-1[/tex]

[tex] g ( f (x)) [/tex] [tex]= 5(2x^2-1) = 10x^2-5[/tex]

Step-by-step explanation:

We are given the following functions and we are to find [tex] f ( g ( x )) [/tex] and [tex] g ( f ( x )) [/tex].

[tex] f (x) = 2x ^ 2 - 1 [/tex]

[tex] g (x) = 5 x [/tex]

Finding [ tex ] f ( g (x)) [/tex] by substituting [tex]5x[/tex] in place of [tex]x[/tex]:

[ tex ] f ( g (x)) [/tex] [tex]=2(5x)^2-1=2(25x^2)-1=50x^2-1[/tex]

Now finding [ tex ] g ( f (x)) [/tex] by substituting [tex]2x^2[/tex] in place of [tex]x[/tex]:

[ tex ] g ( f (x)) [/tex] [tex]= 5(2x^2-1) = 10x^2-5[/tex]