Respuesta :
Answer:
f(g(x)) = 50x^2 -1
g(f(x)) = 10x^2 - 5
Step-by-step explanation:
Given: f(x) = 2x^2 -1 and g(x) = 5x
f(g(x)) = f.g(x)
Here we have to replace x by 5x in f(x) function
= 2(5x)^2 - 1
= 2(25x^2) - 1
f(g(x)) = 50x^2 -1
Now we have to find g(f(x))
We have to replace x by 2x^2 - 1 in g(x) function.
g(f(x)) = 5(2x^2 - 1)
g(f(x)) = 10x^2 - 5
Thank you.
Hope you will understand the concept.
Thank you.
Answer:
[tex] f ( g (x)) [/tex] [tex]=2(5x)^2-1=2(25x^2)-1=50x^2-1[/tex]
[tex] g ( f (x)) [/tex] [tex]= 5(2x^2-1) = 10x^2-5[/tex]
Step-by-step explanation:
We are given the following functions and we are to find [tex] f ( g ( x )) [/tex] and [tex] g ( f ( x )) [/tex].
[tex] f (x) = 2x ^ 2 - 1 [/tex]
[tex] g (x) = 5 x [/tex]
Finding [ tex ] f ( g (x)) [/tex] by substituting [tex]5x[/tex] in place of [tex]x[/tex]:
[ tex ] f ( g (x)) [/tex] [tex]=2(5x)^2-1=2(25x^2)-1=50x^2-1[/tex]
Now finding [ tex ] g ( f (x)) [/tex] by substituting [tex]2x^2[/tex] in place of [tex]x[/tex]:
[ tex ] g ( f (x)) [/tex] [tex]= 5(2x^2-1) = 10x^2-5[/tex]