A crow drops a 0.11kg clam onto a rocky beach from a height of 9.8m. What is the kinetic energy of the clam when it is 5.0m above the ground? What is its speed at that point?

Respuesta :

Answer:

The kinetic energy of the clam at a height of 5.0 m is 5.19 J and the speed of the clam at that height is 9.71 m/s.

Explanation:

Mechanical energy is constant throughout the travel, we know that mechanical energy is calculated by adding potential energy and kinetic energy. Potential energy = [tex]m \times g \times h[/tex], Kinetic energy = [tex]\frac{1}{2} \times m \times v^{2}[/tex] and Mechanical energy = [tex]m \times g \times h+\frac{1}{2} \times m \times v^{2}[/tex] Kinetic energy is zero at initial point. Now mechanical energy of clam with m=0.11kg,g=9.81[tex]\frac{m}{s^{2}}[/tex],h=9.8 m is = 0.11×9.81×9.8 = 10.58 J.

Mechanical energy of clam at a height of 5.0 m = [tex]0.11 \times 9.81 \times 5+\frac{1}{2} \times m \times v^{2}[/tex] =[tex]5.39+\frac{1}{2} \times m \times v^{2}[/tex]. We know that mechanical energy is constant hence, mechanical energy of clam at height 9.8 m is equal to mechanical energy at height 5.0 m. This is represented as following

10.58 = [tex]5.39+\frac{1}{2} \times m \times v^{2}[/tex] 10.58 – 5.39 =[tex]\frac{1}{2} \times m \times v^{2}[/tex]  5.19 = [tex]\frac{1}{2} \times m \times v^{2}[/tex] kinetic energy of the clam is 5.19 J.

Now speed of the clam at height 5.0 m is 5.19 = [tex]\frac{1}{2} \times 0.11 \times v^{2} \frac{5.19 \times 2}{0.11}=v^{2}[/tex] 94.36 = [tex]v^{2} \sqrt{94.36}=v \quad v[/tex]= 9.71 m/s. The speed of the clam is 9.71 m/s.

The kinect energy is equal to 5.19J and the velocity is equal to 9.71m/s.

Mechanical energy

The kinetic energy of an object at a given point depends on the ratio of its mechanical energy.

This energy is always constant, so we can make the following equality:

                                          [tex]E_m = E_p + E_k[/tex]

                                     [tex]E_m = m \times g \times h + \frac{m\times v^{2}}{2}[/tex]

                 

                                    [tex]E_m = 0.11 \times 9.81 \times 9.8 + 0 \\E_m = 10.58J[/tex]

                               [tex]E_m = 0.11 \times 9.81 \times 5 + \frac{0.11\times v^{2}}{2}[/tex]

  • 1º = 2º

                                   [tex]10.58 = 0.11 \times 9.81 \times 5 + \frac{0.11\times v^{2}}{2}\\[/tex]

                                                  [tex]v = 9.71m/s[/tex]

Finally, we can calculate the kinetic energy:

                                            [tex]E_k= \frac{0.11\times 9.71^{2}}{2}\\E_k = 5.19J[/tex]

So, the kinect energy is equal to 5.19J and the velocity is equal to 9.71m/s.

Learn more about mechanical energy in: brainly.com/question/14127859