Respuesta :

Answer:

Given the radical form: [tex]4\sqrt{7^3}[/tex]

Use the exponent rules:

[tex]\sqrt[n]{a^m} = (a^m)^{\frac{1}{n}} = a^{\frac{m}{n}}[/tex]

we can write [tex]\sqrt{7^3}[/tex] as:

[tex]\sqrt{7^3} = (7^3)^{\frac{1}{2}} = 7^{\frac{3}{2}}[/tex]

then;

[tex]4\sqrt{7^3}[/tex] = [tex]4 \cdot 7^{\frac{3}{2}}[/tex]

Therefore, [tex]4\sqrt{7^3}[/tex] in exponential form is [tex]4 \cdot 7^{\frac{3}{2}}[/tex]


Answer:

on edgen its A.) 7 3/4

Step-by-step explanation: