No. Because sides JM and KL have different slopes from sides AD and BC .
The formula of a slope:
[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
For AD:
We have the points A(2, -2) and D(1, -4). Substitute:
[tex]m=\dfrac{-4-(-2)}{1-2}=\dfrac{-2}{-1}=2[/tex]
For JM:
We have the points J(4, -4) and M(2, -9). Substitute:
[tex]m=\dfrac{-9-(-4)}{2-4}=\dfrac{-5}{-2}=2.5[/tex]
[tex]2\neq2.5[/tex]
----------------------------------------
Another argument.
No. Because the MJ is not twice as long as AD.
The formula of the length of a segment:
[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
The length of AD:
[tex]|AD|=\sqrt{(1-2)^2+(-4-(-2))^2}=\sqrt{(-1)^2+(-2)^2}=\sqrt{1+4}=\sqrt5[/tex]
The length of MJ:
[tex]|MJ|=\sqrt{(2-4)^2+(-9-(-4))^2}=\sqrt{(-2)^2+(-5)^2}=\sqrt{4+25}=\sqrt{29}[/tex]
[tex]\sqrt{29}\neq2\sqrt5[/tex]