Mass of Hour hand = 60 kg
length of hour hand = 2.70 m
Now moment of inertia of the hour hand is given by
[tex]I = \frac{mL^2}{3}[/tex]
[tex]I = \frac{60(2.70)^2}{3}[/tex]
[tex]I = 145.8 kg m^2[/tex]
now the angular speed of hour hand is
[tex]\omega = \frac{2\pi}{T}[/tex]
[tex]\omega = \frac{2\pi}{12\times3600}[/tex]
[tex]\omega = 1.45\times 10^{-4} rad/s[/tex]
now angular momentum is given as
[tex]L_1 = I\omega = 145.8 \times 1.45 \times 10^{-4} = 0.021 kg m^2/s[/tex]
Mass of minute hand = 100 kg
length of minute hand = 4.50 m
Now moment of inertia of the minute hand is given by
[tex]I = \frac{mL^2}{3}[/tex]
[tex]I = \frac{100(4.50)^2}{3}[/tex]
[tex]I = 675 kg m^2[/tex]
now the angular speed of minute hand is
[tex]\omega = \frac{2\pi}{T}[/tex]
[tex]\omega = \frac{2\pi}{60\times60}[/tex]
[tex]\omega = 1.74\times 10^{-3} rad/s[/tex]
now angular momentum is given as
[tex]L_2 = I\omega = 675 \times 1.74 \times 10^{-3} = 1.178 kg m^2/s[/tex]
Total angular momentum is given as
[tex]L = L_1 + L_2[/tex]
[tex]L = 0.021 + 1.178 = 1.2 kg m^2/s[/tex]