HELP

Find the perimeter of the figure with the given coordinates on the left and match to the solution on the right. Round your answer to the nearest tenth if needed.


1. A(2, -4), B(-2, -1), C(-5, -5), D(-1, -8)


2. X(-2, 1), Y(4, 3), Z(5, -1)


3. A(0, 4), B(4, 1), C(4, -4), D(-4, -4), E(-4, 1)


4. T(-5, 0), U(7, 3), V(9, -6), W(-3, -9)


5. S(-1, 6), T(-1, -8), U(7, -8)


6. A(-7, 0), B(-3, 5), C(2, 1), D(-2, -4)



A. 38.1

B. 28

C. 17.7

D. 43.2

E. 20

F. 25.6

Respuesta :

Answer:

We find the perimeter using the distance formula between two points.

1)   A(2, -4), B(-2, -1), C(-5, -5), D(-1, -8)    

AB = [tex]\sqrt{(x_2-x_1)^{2}+(y_2-y_1)^{2}}[/tex]

     =  [tex]\sqrt{(-2-2)^{2}+(-1+4)^{2}  }[/tex]

    = [tex]\sqrt{25}[/tex]

    = 5 units

Similarly, BC = 5 units

CD = 5 units

AD = 5 units

Perimeter = AB+BC+CD+AD = 20 units (E)

2) X(-2, 1), Y(4, 3), Z(5, -1)  

XY =  [tex]\sqrt{(x_2-x_1)^{2}+(y_2-y_1)^{2}}[/tex]

    =   [tex]\sqrt{(4+2)^{2}+(3-1)^{2}  }[/tex]

   = √40 = 6.3

Similarly, YZ = √17 = 4.1

XZ = 7.3

Perimeter = XY+YZ+XZ = 17.7 units (C)

3) A(0, 4), B(4, 1), C(4, -4), D(-4, -4), E(-4, 1)



AB =  [tex]\sqrt{(x_2-x_1)^{2}+(y_2-y_1)^{2}}[/tex]

     =  [tex]\sqrt{(4-0)^{2}+(1-4)^{2}  }[/tex]

    = √25 = 5 units

BC = 5 units

CD = 8 units

DE = 5 units

AE = 5 UNITS

Perimeter = 28 units (B)

4) . T(-5, 0), U(7, 3), V(9, -6), W(-3, -9)


TU = [tex]\sqrt{(x_2-x_1)^{2}+(y_2-y_1)^{2}}[/tex]

    = [tex]\sqrt{(7+5)^{2}+(3-0)^{2}  }[/tex]

    = √153 = 12.4 units

UV =  9.2 units

VW = 12.4 units

TW = 9.2 units

Perimeter = 43.2 units (D)

5)  S(-1, 6), T(-1, -8), U(7, -8)

ST =  [tex]\sqrt{(x_2-x_1)^{2}+(y_2-y_1)^{2}}[/tex]

   =  [tex]\sqrt{(-1+1)^{2}+(-8-6)^{2}}[/tex]

   = 14 units

TU = 8 units

SU = 16.1 units

Perimeter = 38.1 units (A)

6) A(-7, 0), B(-3, 5), C(2, 1), D(-2, -4)

AB = [tex]\sqrt{(x_2-x_1)^{2}+(y_2-y_1)^{2}}[/tex]

     = [tex]\sqrt{(-3+7)^{2}+(5-0)^{2}}[/tex]

     = 6.4 units units

BC =  6.4 units

CD = 6.4 units

AD = 6.4 units

Perimeter = 25.6 units (F)