Use the law of conservation of momentum. Since the momentum is a linear measure, we can treat each of the dimension separately:
i-direction:
[tex]m_1u_{1i}+m_2u_{2i}=m_1v_{1i}+m_2v_{2i}\\v_{2i} = \frac{m_1u_{1i}+m_2u_{2i}-m_1v_{1i}}{m_2}=\frac{(2\cdot 15-2\cdot10+2\cdot5)kg\frac{m}{s}}{2kg}=10\frac{m}{s}[/tex]
j-direction:
[tex]m_1u_{1j}+m_2u_{2j}=m_1v_{1j}+m_2v_{2j}\\v_{2j} = \frac{m_1u_{1j}+m_2u_{2j}-m_1v_{1j}}{m_2}=\frac{(2\cdot 30+2\cdot5-2\cdot20)kg\frac{m}{s}}{2kg}=15\frac{m}{s}[/tex]
Answer: Final velocity is: (10i + 15j) m/s
Change in the kinetic energy:
[tex]\Delta E_k = E_{ku}-E_{kv} = \frac{1}{2}m(u_1^2+u_2^2-v_1^2-v_2^2)=\\=\frac{1}{2}2kg(1125+125-425-325)\frac{m^2}{s^2}=500J[/tex]
Answer: The system lost 500J worth of kinetic energy in the collision