Respuesta :

Answer:

120 liters of 60% alcohol solution is needed

Step-by-step explanation:

Let's assume

x liters of 60% alcohol solution  is added

so, we  get solution as

[tex]=\frac{60}{100}\times x[/tex]

[tex]=0.6x[/tex]

we are given

40 liters of a 20% alcohol solution is

[tex]=40\times\frac{20}{100}[/tex]

[tex]=40\times\frac{20}{100}[/tex]

[tex]=8[/tex]

so, total alcohol solution is

[tex]=8+0.6x[/tex]

now, we can find total solutions

total solutions is

[tex]=x+40[/tex]

now, it is making 50% solution

so, we get

[tex]\frac{8+0.6x}{x+40} =\frac{50}{100}[/tex]

now, we can solve for x

[tex]\left(8+0.6x\right)\cdot \:100=\left(x+40\right)\cdot \:50[/tex]

[tex]800+60x=50x+2000[/tex]

[tex]10x=1200[/tex]

[tex]x=120[/tex]

So,

120 liters of 60% alcohol solution is needed