Respuesta :

gmany

The point-slope form:

[tex]y-y_1=m(x-x_1)[/tex]

m - slope

(x₁, y₁) - point

The formula of a slope:

[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]

We have the points (3, 95) and (11, 12). Substitute:

[tex]m=\dfrac{12-95}{11-3}=-\dfrac{83}{8}[/tex]

[tex]\boxed{y-95=-\dfrac{83}{8}(x-3)}[/tex]    point-slope form

Convert to the slope-ntercept form (y = mx + b)

[tex]y-95=-\dfrac{83}{8}(x-3)[/tex]       use the distributivie property

[tex]y-95=-\dfrac{83}{8}x+\dfrac{249}{8}[/tex]        add 95 to both sides

[tex]y=-\dfrac{83}{8}x+\dfrac{249}{8}+95\\\\y=-\dfrac{83}{8}x+\dfrac{249}{8}+\dfrac{760}{8}[/tex]

[tex]\boxed{y=-\dfrac{83}{8}x+\dfrac{1009}{8}}[/tex]     slope-intercept form

Convert to the standrd form (Ax + By = C)

[tex]y=-\dfrac{83}{8}x+\dfrac{1009}{8}[/tex]        multiply both sides by 8

[tex]8y=-83x+1009[/tex]       add 83x to both sides

[tex]\boxed{83x+8y=1009}[/tex]     standard form

Answer:y= -10.375x+126.25

Step-by-step explanation: