The ratio of the width to the length of a rectangle is 2:3, respectively. Answer each of the following. By what percent would the area of the rectangle change if the width of the rectangle is increased by 50% and the length is increased by the same number of units?

Respuesta :

Answer:

200%

Step-by-step explanation:

Length and breadth is in the ratio 2:3

Then, let length = 2x and breadth = 3x

Area of rectangle = l×b = 2x×3x = 6[tex]x^{2}[/tex]

Now if breadth is increased by 50% ,

our new breadth will be = 3x + 50%(3x)

                                        = 4.5x

And length is increased by same number of units, length = 2x+ 2x = 4x

New area = l×b = 4.5x × 4x

                         = 18[tex]x^{2}[/tex]

Percentage change in area = [tex]\frac{New area - old area}{old area}[/tex]×1000

                                            = [tex]\frac{18x^{2}-6x^{2}  }{6x^{2} }[/tex]×100

                                            = 200%

Answer:

The area of rectangle is increased by 200%

Step-by-step explanation:

Given the ratio of the width to the length of a rectangle is 2:3, respectively.

Width = 2x units

and  Length = 3x units

[tex]Area = Width \times length[/tex]

                =  [tex]2x\times 3x=6x^2[/tex] square units

now, if the width of the rectangle is increased by 50% and the length is increased by the same number of units

then width and length becomes

New width=2x+0.05(2x)=2x+x=3x units

and length=3x+3x=6x units

Therefore, [tex]New area=Width\times length[/tex]

                =  [tex]3x\times 6x=18x^2[/tex] square units

Area increased by percentage = [tex]\frac{New Area-Old Area}{Old Area}\times 100[/tex]

                                                   = [tex]\frac{18x^{2}-6x^{2}}{6x^{2}} \times 100=\frac{12x^{2} }{6x^{2}} \times 100[/tex]

                                                    = 200%