Answer: (3) f(8) = g(8)
Step-by-step explanation:
Let's compare the values of f(x) and g(x) when x = 0, 2, 8, and 4
f(x) g(x) Comparison
f(x) = 2x - 3 [tex]g(x)=\dfrac{3}{2}x+1[/tex]
f(0) = 2(0) - 3 [tex]g(0)=\dfrac{3}{2}(0)+1[/tex]
= -3 = 1 f(0) < g(0)
f(2) = 2(2) - 3 [tex]g(2)=\dfrac{3}{2}(2)+1[/tex]
= 1 = 4 f(2) < g(2)
f(8) = 2(8) - 3 [tex]g(8)=\dfrac{3}{2}(8)+1[/tex]
= 13 = 13 f(8) = g(8)
f(4) = 2(4) - 3 [tex]g(4)=\dfrac{3}{2}(4)+1[/tex]
= 5 = 7 f(4) < g(4)
The only statement provided that is true is f(8) = g(8)