A car fits onto a golden rectangle with a length of 12 ft. What is the car's width? Write your answer in simplified radical form and rounded to the nearest tenth of a foot.
basically, it is when legnth is [tex] \frac{1+ \sqrt{5} }{2} [/tex] the width
legnth=12 legnth= [tex] \frac{1+ \sqrt{5} }{2} [/tex] times width
12= [tex] \frac{1+ \sqrt{5} }{2} [/tex] times width multiply both sides by 2 24= [tex] 1+ \sqrt{5} [/tex] times width subtract 1 23=√5 times width divide both sides by √5 23/(√5)=width multiply by (√5)/(√5) to rationalize denomenator [tex] \frac{23 \sqrt{5} }{5} [/tex]=width
aprox 10.28 so 10.3 ft
w=[tex] \frac{23 \sqrt{5} }{5} [/tex] ft or aprox 10.3ft